lunes, 13 de marzo de 2017

Cosmo Noticias 13-03-17




Posted: 09 Mar 2017 12:00 PM PST



El cielo austral, ubicado entre el ecuador celeste y el polo sur, es bien conocido por estar lleno de objetos extraordinarios, espectaculares y muy diversificados, tanto dentro de nuestra Vía Láctea como en el mundo extragaláctico. Esta charla trata de describirlos y de exponer sus varios roles dentro de nuestro Universo, con una muestra de imágenes de una gran belleza, tomadas por astro-fotógafos aficionados talentosos o por observatorios profesionales en la Tierra o aun desde el espacio.
La charla “Las maravillas del cielo austral” será dictada por Christian H. R. Nitschelm, profesor adjunto de la Unidad de Astronomía (Facultad de Ciencias Básicas, Universidad de Antofagasta).
Cuándo: Jueves 16 de marzo de 2017 a las 18:30 h.
Dónde: Centro Cultural Estación Antofagasta. Bolívar 280, esquina Washington, Antofagasta.
Valor: Entrada liberada.
Posted: 09 Mar 2017 07:00 AM PST




La figura muestra la imagen del gas molecular alrededor de LL Pegasi. Crédito: ALMA (ESO/NAOJ/NRAO)/Hyosun Kim et al.

Un equipo internacional de astrónomos encabezado por Hyosun Kim, del Instituto de Astronomía y Astrofísica Academia Sinica (ASIAA, Taiwán), encontró una manera de determinar la forma de la órbita de unas estrellas binarias que presentan períodos orbitales demasiado largos para ser medida directamente. Esto fue posible gracias a una observación de la antigua estrella LL Pegasi realizada con el avanzado telescopio Atacama Large Millimeter/submillimeter Array (ALMA).
“Es muy emocionante ver una estructura en espiral tan bonita en el cielo. Nuestras observaciones revelaron que esta concha en espiral tiene una geometría tridimensional de una extraordinaria regularidad, y hemos desarrollado una teoría muy verosímil para explicar sus pormenores”, afirma Hyosun Kim.
Las nuevas imágenes de ALMA muestran en detalle las características de la concha en espiral impresa en el gas expulsado continuamente por LL Pegasi. Al comparar estas observaciones con simulaciones informáticas los astrónomos pudieron, por primera vez, concluir que esta morfología del gas es provocada por un sistema binario con una órbita sumamente elíptica. En concreto, la bifurcación de la concha en espiral claramente visible en las imágenes de ALMA es una característica única de los sistemas binarios elípticos. Este objeto típico aporta nueva información sobre la naturaleza de las estrellas centrales binarias a través de patrones recurrentes ubicados lejos de la estrella, a distancias de algunos miles de radios estelares.



Al comparar la distribución del gas molecular alrededor de LL Pegasi representada con exquisito detalle por ALMA con simulaciones teóricas, el equipo concluyó que la bifurcación del patrón en espiral de concha (indicado con un recuadro blanco) es el resultado de un sistema binario altamente elíptico. Crédito: ALMA (ESO/NAOJ/NRAO)/Hyosun Kim et al.

“La increíble sensibilidad y capacidad de ALMA para obtener imágenes tan precisas de espirales complejas como esta fue fundamental para este estudio. Quedamos encantados de ver las nítidas imágenes traducidas en resultados tan completos y la utilidad que tendrán en el estudio de sistemas binarios”, celebra Alfonso Trejo (ASIAA, Taiwán), coautor del estudio.
Las estrellas binarias en avanzada etapa de evolución con órbitas elípticas pueden ser ubicuas durante un largo período. Muchas nebulosas planetarias –estrellas que se encuentran en la etapa siguiente de evolución estelar– tienen estructuras casi elípticas en la parte externa y estructuras muy asimétricas en la parte interna. Las formas casi esféricas incluyen las que tienen aspecto de espiral, concha y arco, mientras que las no esféricas son bipolares o multipolares. La coexistencia de estructuras con geometrías tan distintas es enigmática porque delata la existencia simultánea de interacciones binarias amplias y cercanas al mismo tiempo.
Este fenómeno se ha atribuido a las estrellas binarias con órbitas elípticas. De la investigación actual se desprende que los parámetros orbitales de las binarias centrales pueden ser determinados mediante un análisis detallado de los patrones externos recurrentes, que proporcionan indicios sobre la transición de estructuras cuasiesféricas a asimétricas.



Imagen tomada por el telescopio Hubble de LL Pegasi publicada en 2010 (izquierda) e imagen tomada por ALMA (derecha). Crédito: ESA/NASA & R. Sahai. ALMA (ESO/NAOJ/NRAO)/Hyosun Kim et al.

LL Pegasi es una estrella gigante al menos 200 veces más grande que el Sol y que pierde masa. En cuanto a las etapas de evolución estelar, actualmente se encuentra en la rama asintótica gigante, que nuestro Sol alcanzará dentro de algunos miles de millones de años. Esta estrella fue detectada hace unos 10 años gracias a la imagen de una espiral casi perfecta obtenida por el telescopio espacial Hubble de la NASA/ESA. Antes de este hallazgo, nunca se había observado una espiral alrededor de una estrella antigua.
“Este sistema particularmente regular ayuda a entender cómo las órbitas de estos sistemas evolucionan en el tiempo, puesto que cada vuelta de la espiral describe una órbita diferente en un plazo diferente”, afirma Mark Morris (UCLA, EE.UU.), coautor del estudio.
La sorprendente regularidad de este patrón lo llevó a ser considerado un sistema binario en una órbita circular. Y ahora es igualmente sorprendente que esta espiral completa, que ha sido mejor observada y no presenta ambigüedades, sea influenciada por un sistema binario de órbita elíptica.
“Mientras la imagen del telescopio Hubble muestra la hermosa estructura en espiral, es una proyección bidimensional de una forma tridimensional, que ahora fue totalmente revelada por los datos de ALMA”, señala Raghvendra Sahai (JPL, EE.UU.), coautor del estudio. Las nuevas imágenes de ALMA revelan información espacio-cinemática del denso gas molecular presente en la concha en espiral y muestra la dinámica de la pérdida de masa en la estrella gigante modulada por su movimiento orbital.



Cada cuadro de la animación muestra el gas molecular alrededor de LL Pegasi en una velocidad en la línea de visión diferente. Esta velocidad, de 1 km/s por cuadro, se proporciona en la esquina superior derecha. El tamaño del campo equivale a 20.000 veces la distancia entre el Sol y la Tierra. Créditos: ALMA(ESO/NAOJ/NRAO)/Hyosun Kim et al.

“Según el intervalo de los anillos de la espiral, el período orbital de LL Pegasi es de unos 800 años, con lo cual el movimiento binario es prácticamente imposible de detectar incluso con observaciones continuas durante varias generaciones sucesivas. Descifrar el patrón de la espiral es una forma inteligente de conocer la historia del movimiento orbital”, agrega Sheng-Yuan Liu (ASIAA, Taiwán), coautor del estudio.
“Al mostrarnos esta asombrosa estructura de concha en espiral, la naturaleza nos ha dejado mensajes claros. El desafío que enfrentan los astrónomos es descifrar esos mensajes para determinar las dinámicas de las estrella centrales”, observa Hyosun Kim.












El artículo “The large-scale nebular pattern of a superwind binary in an eccentric orbit” fue publicado en línea el 1 de marzo de 2017 por Nature Astronomy.

Fuente: ALMA

Posted: 06 Mar 2017 07:00 AM PST




Ilustración artística de un objeto transneptuniano extremo (a la derecha) y un planeta (izquierda) en los confines del Sistema Solar. Crédito: José Antonio Peñas (SINC).

Los “objetos transneptunianos extremos” (ETNO, por sus siglas en inglés) reciben ese nombre porque se mueven más allá de Neptuno, en órbitas muy alejadas respecto a la de la Tierra. Para hacerse una idea, nosotros orbitamos alrededor del Sol a una distancia media de una unidad astronómica (UA, 150 millones de km) y los objetos transneptunianos extremos lo hacen a más de 150 UA. Se conocen de forma indirecta un total de 21, y hasta ahora solo uno (Sedna) se había podido observar mediante espectroscopía.
Pero si hay una característica importante de los ETNO es que sus propiedades dinámicas se explican mejor si existen uno o más planetas desconocidos en el Sistema Solar, lo que supondría una noticia extraordinaria en astronomía. Los astrónomos Carlos y Raúl de la Fuente Marcos fueron unos de los primeros en plantear esa posibilidad en 2015.
Un año más tarde los investigadores Mike Brown y Konstantin Batygin usaron las órbitas de siete ETNO para predecir la existencia de una super-tierra: el famoso Planeta Nueve, que se supone gira en torno al Sol a unas 700 UA y que es objeto de una carrera para descubrirlo entre equipos de astrofísicos de todo el mundo.
Ahora, un equipo de investigación liderado por el Instituto de Astrofísica de Canarias (IAC), en colaboración con los hermanos De la Fuente Marcos, de la Universidad Complutense de Madrid, ha dado un paso más para caracterizar físicamente estos objetos y ayudar a confirmar o no la hipótesis de un nuevo planeta en nuestro sistema solar gracias al estudio de dos ETNO.
Los científicos han llevado a cabo las primeras observaciones espectroscópicas de los llamados 2004 VN112 y 2013 RF98, ambos particularmente interesantes desde el punto de vista dinámico, pues sus órbitas son casi idénticas y sus polos orbitales presentan una separación angular extremadamente pequeña.
Esto sugiere un origen común y sus órbitas actuales podrían ser resultado de una interacción en el pasado con el hipotético Planeta Nueve. El estudio propone que este par de objetos transneptunianos extremos fue un asteroide binario que se desligó tras acercarse a un planeta más allá de Plutón.
Primeras observaciones espectroscópicas en el rango visible
Las observaciones espectroscópicas, en el rango visible, se realizaron en colaboración con los astrónomos de soporte Gianluca Lombardi y Ricardo Scarpa, usando el espectrógrafo OSIRIS del Gran Telescopio CANARIAS (GTC), ubicado en el Observatorio del Roque de los Muchachos (Garafía, La Palma).
“Se trata del primer estudio espectroscópico sobre estos objetos, que no están al alcance de la mayoría de los telescopios”, destaca Carlos de la Fuente Marcos, que añade: “El Gran Telescopio CANARIAS ha demostrado que está a la altura de los telescopios de Chile o de Hawái”.
La tarea de identificar los asteroides fue muy laboriosa dado que, al estar tan lejos, su desplazamiento aparente en el cielo es muy lento. Después midieron sus magnitudes aparentes (su brillo intrínseco observado desde la Tierra) y, además, recalcularon la órbita de 2013 RF98, la cual estaba pobremente determinada: los investigadores encontraron el objeto a más un minuto de arco de la posición predicha por las efemérides.
Estas observaciones han ayudado a mejorar su órbita y han sido publicadas por el Minor Planet Center, organismo responsable de la identificación de planetas menores (cometas y asteroides), así como de sus medidas y posiciones orbitales.
En cuanto a sus composiciones, el rango visible del espectro puede aportar cierta información. Mediante su pendiente espectral, se sabe si pueden tener hielos puros en su superficie, como es el caso de Plutón, así como carbono altamente procesado. También puede indicar la posible presencia de silicatos amorfos, como en el caso de los asteroides Troyanos de Júpiter.
Los valores obtenidos de 2004 VN112 y 2013 RF98 son prácticamente idénticos y similares a los observados mediante fotometría de otros dos objetos transneptunianos extremos, 2000 CR105 y 2012 VP113. En cambio, Sedna, el único que había sido observado espectroscópicamente hasta la fecha, presenta unos valores muy diferentes a los demás de su clase.



Las órbitas de los seis objetos transneptunianos (magenta) se alinean misteriosamente hacia una dirección, una configuración que se puede explicar por la presencia de un Planeta Nueve (naranja) en el Sistema Solar. Crédito: Caltech/R. Hurt (IPAC).

Estos cinco objetos forman parte del grupo de los siete utilizados para plantear la hipótesis del Planeta Nueve, lo que sugiere que todos deben tener una región de origen común, salvo Sedna, que se cree que proviene de la zona interna de la nube de Oort.
“Dado que las pendientes espectrales similares observadas del par 2004 VN112 – 2013 RF98 sugieren un origen físico común, nos planteamos la posibilidad de que hubieran sido en su día un asteroide binario que quedó desligado por un encuentro con un objeto más masivo”, explica Julia de León, primera autora de la investigación y astrofísica del IAC.
Para validar esta hipótesis, el equipo hizo miles de simulaciones numéricas, para ver cómo se separan los polos orbitales con el tiempo. Los resultados sugieren que un posible Planeta Nueve, con una masa de entre 10 y 20 masas terrestres orbitando el Sol a una distancia media de entre 300 y 600 UA, podría haber desviado el par 2004 VN112 – 2013 RF98 hace unos 5 a 10 millones de años.
De esta forma, se explicaría cómo estos dos asteroides, en un principio girando uno alrededor del otro, fueron separando sus órbitas poco a poco al haberse acercado a un objeto mucho más masivo en un determinado momento: el Planeta Nueve.

El artículo “Visible spectra of (474640) 2004 VN112 – 2013 RF98 with OSIRIS at the 10.4m GTC: evidence for binary dissociation near aphelion among the extreme trans-Neptunian objects” fue publicado el 7 de enero de 2017 por Monthly Notices of the Royal Astronomical Society: Letters.

Fuente: SINC

Publicar un comentario