lunes, 1 de mayo de 2017

Cosmo Noticias 01-05-17

Posted: 24 Apr 2017 08:00 AM PDT


Ilustración artística de la enana blanca y el agujero negro del sistema X9 en el cúmulo 47 Tucanae. Crédito: NASA/CXC/M.Weiss y A. Bahramian.
Un equipo de astrónomos ha encontrado evidencia de una estrella que orbita un agujero negro dos veces por hora. Esta puede ser la danza orbital más estrecha detectada hasta ahora entre un agujero negro y una estrella.
Este descubrimiento fue realizado utilizando los observatorios NuSTAR y Chandra de la NASA, y el conjunto Australia Telescope Compact Array (ATCA) de CSIRO.
La pareja estelar se encuentra en el cúmulo globular 47 Tucanae, un denso conjunto de estrellas a unos 14.800 años-luz de la Tierra.
Si bien los astrónomos han observado este sistema binario durante años, no fue hasta 2015 que las observaciones de radio con ATCA revelaron que probablemente el par contiene un agujero negro que le roba material a una enana blanca compañera, una estrella de baja masa que ha agotado la mayoría o todo su combustible nuclear.
Nuevos datos de Chandra de este sistema, conocido como X9, muestran que cambia su brillo en rayos X de manera regular cada 28 minutos, lo que probablemente es el tiempo que tarda la estrella compañera en completar una órbita alrededor del agujero negro. Los datos también muestran evidencia de grandes cantidades de oxígeno en el sistema, un rasgo característico de las enanas blancas. Por lo tanto, es posible que la estrella compañera sea una enana blanca que orbita el agujero negro a una distancia solo 2,5 veces la que hay entre la Tierra y la Luna.
“Esta enana blanca está tan cerca del agujero negro que el material está siendo arrancado de la estrella y dejado en un disco de materia alrededor del agujero negro antes de caer en él”, dijo el autor principal Arash Bahramian de la Universidad de Alberta en Edmonton (Canadá) y de la Universidad Estatal de Míchigan en East Lansing (EE.UU.). “Afortunadamente para esta estrella, no creemos que siga este camino hacia el olvido, sino que seguirá en órbita”.
Aunque la enana blanca no parece estar en peligro de caer o ser destrozada por el agujero negro, su destino es incierto.
“Eventualmente, tanta materia será arrancada de la enana blanca que terminará tendiendo solo la masa de un planeta”, dijo el coautor Craig Heinke, también de la Universidad de Alberta. “Si sigue perdiendo masa, la enana blanca podría evaporarse completamente”.
¿Cómo fue que el agujero negro obtuvo una compañera tan cercana? Una posibilidad es que el agujero se encontró con una gigante roja y el gas de las regiones exteriores de la estrella fue eyectado del sistema binario. El núcleo restante de la gigante roja se volvería una enana blanca, la que se convertiría en la compañera del agujero negro. La órbita del sistema se habría reducido a medida que se emitían ondas gravitacionales, hasta que el agujero negro comenzó a arrancar material de la enana blanca.
Las ondas gravitacionales producidas actualmente por el sistema binario tienen una frecuencia demasiado baja para ser detectada con el Laser Interferometer Gravitational-Wave Observatory (LIGO), que recientemente detectó ondas gravitacionales procedentes de la fusión de dos agujeros negros. Las fuentes como X9 podrían, potencialmente, ser detectadas con futuros observatorios espaciales de ondas gravitacionales.
Una explicación alternativa de las observaciones es que la enana blanca es compañera de una estrella de neutrones y no de un agujero negro. En este escenario, la estrella de neutrones gira más rápido a medida que saca material de una estrella compañera a través de un disco, un proceso que puede llevar a una estrella de neutrones a girar sobre su eje miles de veces por segundo. Algunos de estos objetos, llamados púlsares transitorios de milisegundos, han sido observados cerca del final de esta fase. Los autores del estudio no están a favor de esta posibilidad ya que los púlsares transitorios de milisegundos tienen propiedades no observadas en X9, tales como una variabilidad extrema en longitudes de rayos X y radio. Sin embargo, no pueden descartar esta explicación.
“Observaremos este sistema binario con detalle en el futuro, dado que sabemos poco sobre cómo debería comportarse un sistema tan extremo”, dijo el coautor Vlad Tudor de la Universidad Curtin el Centro Internacional de Investigación en Radio Astronomía en Perth, Australia. “También seguiremos estudiando los cúmulos globulares de nuestra galaxia para ver si podemos encontrar más evidencias de agujeros negros binarios muy cercanos”.
El estudio “The ultracompact nature of the black hole candidate X-ray binary 47 Tuc X9” fue publicado el 24 de febrero de 2017 por Monthly Notices of the Royal Astronomical Society.
Fuente: NASA


Posted: 20 Apr 2017 08:00 AM PDT


Ilustración artística del exoplaneta rocoso LHS 1140b pasando frente a su estrella. Crédito: M. Weiss/CfA.
Una súper-Tierra recién descubierta, denominada LHS 1140b, orbita en la zona habitable de una débil estrella enana roja llamada LHS 1140, en la constelación de Cetus. Las enanas rojas son mucho más pequeñas y más frías que el Sol y, aunque LHS 1140b está diez veces más cerca de su estrella que la Tierra del Sol, sólo recibe de su estrella alrededor de la mitad de luz que la Tierra y se encuentra en medio de la zona habitable. Desde la Tierra, la órbita se ve casi de canto por lo que, cuando el exoplaneta pasa delante de su estrella cada 25 días, bloquea un poco de su luz.
“Es el exoplaneta más interesante que he visto en la última década”, afirma el autor principal del estudio que describe el hallazgo, Jason Dittmann, del Centro Harvard-Smithsonian de Astrofísica (Cambridge, EE.UU.). “Es el objetivo perfecto para llevar a cabo una de las misiones más grandes de la ciencia: buscar evidencias de vida más allá de la Tierra”.
Las condiciones actuales de la enana roja son particularmente favorables, ya que LHS 1140 gira más lentamente y emite menos radiación de alta energía que otras estrellas similares de baja masa. Para la vida tal y como la conocemos, un planeta debe tener agua líquida en su superficie y retener una atmósfera. Sin embargo, cuando las estrellas enanas rojas son jóvenes, suelen emitir radiación que puede dañar la atmósfera de los planetas que las orbitan. En este caso, el gran tamaño del planeta implica que, en su superficie, pueda haber existido un océano de magma durante millones de años. Este océano de lava podría haber proporcionado vapor a la atmósfera mucho después de que la estrella se hubiese calmado, alcanzando su brillo actual y constante, reponiendo así el agua que podría haberse perdido por la acción de la estrella en su fase más activa.
Inicialmente, el descubrimiento se hizo con la instalación MEarth-South en el Observatorio Interamericano de Cerro Tololo, que detectó los primeros indicios: cambios característicos en la luz que se dan cuando el exoplaneta pasa delante de la estrella. Posteriormente, se hizo un seguimiento crucial con el instrumento High Accuracy Radial velocity Planet Searcher (HARPS) de ESO, confirmando la presencia de la súper-Tierra. HARPS también ayudó a establecer el periodo orbital y permitió deducir la masa y la densidad del exoplaneta.
Los astrónomos estiman que el planeta tiene al menos 5.000 millones de años. También deducen que tiene un diámetro 1,4 veces más grande que el de la Tierra (casi 18.000 kilómetros), pero con una masa unas siete veces mayor que la de la Tierra y, por lo tanto, una densidad mucho más alta. Esto implica que, probablemente, el exoplaneta está hecho de roca con un núcleo denso de hierro.
Esta súper-Tierra puede ser el mejor candidato hasta el momento para futuras observaciones cuyo objetivo sea estudiar y caracterizar, en caso de tenerla, la atmósfera del exoplaneta. Dos de los miembros europeos del equipo, Xavier Delfosse y Xavier Bonfils, ambos del CNRS y el IPAG, en Grenoble (Francia), concluyen: “Para la futura caracterización de planetas en la zona habitable, el sistema LHS 1140 podría ser un objetivo aún más importante que Próxima b o TRAPPIST-1. ¡Este ha sido un año extraordinario para el descubrimiento de exoplanetas!”.
En concreto, con las observaciones que se llevarán a cabo próximamente con el Telescopio Espacial Hubble de la NASA/ESA, se podrá determinar exactamente cuánta radiación de alta energía cae sobre LHS 1140b, por lo que se podrá delimitar su capacidad para albergar vida.
En el futuro, cuando entren en funcionando nuevos telescopios como el E-ELT (European Extremely Large Telescope), es probable que seamos capaces de hacer observaciones detalladas de las atmósferas de exoplanetas y LHS 1140b es un candidato excepcional para este tipo de estudios.
El artículo “A temperate rocky super-Earth transiting a nearby cool star” fue publicado en la edición del 20 de abril de 2017 de Nature.
Fuente: ESO

Posted: 26 Apr 2017 06:14 PM PDT


El Premio Nacional de Ciencias Exactas y académico de la Universidad de Chile, José Maza, presentará en la charla “Colonizando Marte: la siguiente gran empresa de la humanidad” un recorrido desde la carrera espacial de los años sesenta, pasando por la llegada del hombre a la Luna, hasta el desafío actual de ir a Marte. Se explicarán las características más importantes de los planetas y se comentarán los proyectos contemporáneos para explorar, caracterizar y eventualmente colonizar Marte.
Además, el astrónomo estará firmando su último libro titulado “Somos Polvo de Estrellas”. La publicación también estará a la venta ese día y se sorteará un ejemplar entre quienes asistan.

Cuándo: Martes 2 de mayo de 2017 a las 18:45 h.
Dónde: Planetario Chile. Alameda 3349, metro Estación Central, Santiago.
Valor: Entrada liberada, previa inscripción (cupos limitados). Cada reserva es validada con una confirmación del sistema.
Contacto: comunicaciones@planetariochile.cl



Posted: 27 Apr 2017 08:00 AM PDT



Ilustración artística de Cassini viajando entre Saturno y su anillo más interior. Crédito: NASA/JPL-Caltech.
Tras casi 13 años orbitando Saturno, la misión internacional Cassini-Huygens está a punto de abrir su último capítulo: la nave se irá sumergiendose cada vez más entre el planeta y sus anillos para finalizar con un espectacular descenso en picado hacia la atmósfera del planeta el día 15 de septiembre.
El 22 de abril, Cassini efectuó con éxito su 127º y último sobrevuelo de la mayor luna saturniana, Titán. Esta maniobra permitió orientar la nave hacia la trayectoria de su Gran Final: una serie de 22 órbitas, de una semana cada una, que la acercarán al planeta y en las que irá atravesando sus anillos internos y su alta atmósfera. Ayer 26 de abril cruzó por primera vez el plano de los anillos.
Con las repetidas inmersiones en esta región inexplorada, la misión concluirá su viaje en el que ha recopilado datos sin precedentes para responder a cuestiones fundamentales sobre el origen de Saturno y su sistema de anillos.
En 1997, la nave Cassini-Huygens comenzó un viaje de siete años a través del Sistema Solar, llegando a Saturno en julio de 2004. Algunos meses después, el orbitador Cassini liberó la sonda Huygens de la ESA, que aterrizó en Titán el 14 de enero de 2005: era la primera vez que se aterrizaba en el Sistema Solar exterior.
La misión ha contribuido enormemente a nuestra comprensión del entorno saturniano, incluyendo el sistema de anillos y lunas del planeta gigante.
Al combinar los datos recogidos por Huygens sobre el terreno y las observaciones realizadas por Cassini durante sus sobrevuelos de Titán, la misión reveló los procesos atmosféricos de esta luna y su evolución estacional, así como la morfología de su superficie y su estructura interna, que podría incluir un océano de agua líquida.
Envuelta en una densa atmósfera de nitrógeno y cubierta en parte por lagos y ríos, Titán presenta un ciclo meteorológico e hidrológico con interesantes parecidos a los de la Tierra. No obstante, las diferencias son importantes: el componente clave de Titán no es el agua, como en nuestro planeta, sino el metano, y la temperatura es muy baja, de unos -180 °C en la superficie.
A lo largo de sus 13 años de misión, Cassini ha cubierto aproximadamente la mitad de la órbita de Saturno, dado que el planeta tarda 29 años en dar una vuelta al Sol. Así, la nave ha sido testigo de dos estaciones en Titán, un objeto que puede brindarnos valiosa información sobre el pasado y el futuro de la Tierra.
Otro de los hitos de Cassini fue la detección de una columna de vapor de agua y materia orgánica que expulsaban al espacio una serie de fracturas calientes cerca del polo sur de la luna helada de Saturno, Encélado. Estos chorros salinos indican la presencia de un mar subterráneo de agua líquida pocos kilómetros bajo la superficie helada de esta luna, como confirmaron las mediciones de gravedad y rotación.
Un reciente análisis de los datos recopilados durante los sobrevuelos de Encélado con el Espectrómetro de Masas para Iones y Partículas Neutras (INMS) también reveló la presencia de gas de hidrógeno en la columna, sugiriendo que las rocas podrían reaccionar con el agua cálida del fondo marino del océano subterráneo de esta luna. Esta actividad hidrotermal podría suponer una fuente de energía química para la vida, facilitando procesos biológicos no fotosintéticos similares a lo que se encuentran cerca de las fuentes hidrotermales en el fondo oceánico terrestre y que apuntaría a una potencial habitabilidad del océano de Encélado.


Trayectoria de Cassini entre noviembre de 2016 y septiembre de 2017. Crédito: NASA/JPL-Caltech/Erick Sturm.
Después de más de una década de revolucionarios descubrimientos, Cassini ahora se acerca a su final. Le queda poco combustible para corregir su trayectoria, por lo que se decidió cerrar la misión haciendo que se precipitara en la atmósfera saturniana el día 15 de septiembre de este año. Durante el proceso, Cassini se desintegrará, cumpliendo los requisitos de protección planetaria para evitar la posible contaminación de las lunas saturnianas que podrían albergar condiciones aptas para la vida.
El “Gran Final” no solo constituye una forma espectacular de acabar esta extraordinaria misión, también proporcionará multitud de datos científicos únicos que no se habían podido recopilar durante las fases previas de la misión. Hasta ahora, Cassini no se había aventurado en la zona entre Saturno y sus anillos, por lo que las nuevas órbitas casi pueden considerarse una nueva misión.
Estas órbitas cercanas se realizarán con una inclinación de 63 grados respecto al ecuador saturniano y ofrecerán observaciones de los anillos interiores y las nubes del planeta con una resolución nunca antes alcanzada. Las órbitas también permitirán examinar in situ el material de los anillos y el entorno de plasma de Saturno.
Con su investigación radio-científica, Cassini medirá el campo gravitacional de Saturno a tan solo 3.000 km de sus capas superiores de nubes, mejorando sustancialmente los actuales modelos de la estructura interna del planeta y los vientos de su atmósfera. Los científicos esperan que los nuevos datos también les permitan desentrañar la gravedad del planeta a partir de la minúscula atracción ejercida en la nave por los anillos, calculando así la masa total de los anillos con una precisión inaudita. Las estaciones terrestres de la ESA en Argentina y Australia ayudarán a recibir los datos científicos de radio de Cassini, ofreciendo una serie de 22 pases de seguimiento durante su Gran Final.
Las órbitas del Gran Final también permitirán examinar el campo magnético de Saturno a muy poca distancia. Observaciones anteriores han mostrado que el campo magnético es menor de lo esperado, con el eje magnético sorprendentemente bien alineado con la rotación del planeta. Los nuevos datos recopilados por el magnetómetro de Cassini arrojarán luz sobre los motivos de esto y sobre la ubicación de las fuentes del campo magnético, o bien si algo en la atmósfera saturniana ha impedido hasta ahora detectar correctamente su verdadero campo magnético.
Mientras atraviesa el plano de los anillos, el Analizador de Polvo Cósmico de Cassini estudiará la composición de las partículas de polvo de distintas partes del sistema de anillos, mientras que el Espectrómetro de Masas para Iones y Partículas Neutras sondeará las capas de la atmósfera superior de Saturno para analizar las moléculas que escapan de la atmósfera y las moléculas de agua procedentes de los anillos.
“Por fin hemos llegado a la última y más atrevida fase de esta misión sin precedentes, en la que la nave volverá a adentrarse en territorio desconocido”, señala Nicolas Altobelli, científico del proyecto Cassini de la ESA. “Estamos deseando recibir el caudal de nuevos y fascinantes datos que Cassini nos transmitirá en los próximos meses”.

Fuente: ESA
Publicar un comentario