lunes, 29 de mayo de 2017

Cosmo Noticias 29-05-17

Posted: 23 May 2017 09:00 AM PDT

Ilustración artística del objeto OTS44. Crédito: Johan Olofsson (UV & MPIA).
Un equipo internacional de astrónomos liderados por Amelia Bayo, de la Universidad de Valparaíso, descubrió con el observatorio ALMA que un pequeño y aislado planeta ubicado en la constelación del Camaleón no responde a la secuencia normal de evolución de sistemas planetarios esperada por la comunidad científica. El planeta en cuestión, OTS44, se encuentra rodeado de polvo, en una configuración similar a la infancia del Sistema Solar, a unos 520 años-luz de distancia. Sin estrellas progenitoras en el entorno cercano a OTS44, este descubrimiento plantea nuevos acertijos para los astrónomos.
Un aspecto impensable hasta ahora es el estudio de la posible formación de lunas en este sistema, y de sus condiciones de habitabilidad. Además de la posibilidad de descartar y, a su vez, sumar nuevas teorías para explicar el proceso evolutivo de objetos estelares pequeños y la capacidad del observatorio ALMA de entregar datos milimétricos de zonas tan lejanas que se remontan a lugares extremadamente fríos del universo.
El descubrimiento se realizó en Chile por un equipo de astrónomos principalmente de la Universidad de Valparaíso (UV) y del Instituto Max Planck de Heidelberg, Alemania, liderado por Amelia Bayo, investigadora principal del proyecto.
La astrónoma, quien es académica del Instituto de Física y Astronomía de la UV, explicó que el inusual desarrollo del planeta no permite escalar a la teoría que describe las etapas de formación de objetos masivos en el Universo. Agrega que “es como si Júpiter se hubiese formado solo, con grandes cantidades de polvo y gas alrededor, pero sin el Sistema Solar. Algo muy complicado de explicar”.
Utilizando los mejores instrumentos astronómicos del mundo, disponibles en ALMA, Bayo comenzó a escribir la historia radioastronómica de OTS44, nombre con que fue bautizado el planeta, cuya masa es tres mil veces la de nuestra Tierra. Sin embargo, en cifras astronómicas es considerado “extremadamente ligero”.
Para la astrónoma, lo realmente emocionante de este descubrimiento son las características propias del objeto de estudio y el alto nivel tecnológico desarrollado por los telescopios del norte del país, que permitió obtener datos relevantes de la zona observada.
“Este objeto nos sigue confundiendo, ‘juega’ con nosotros, porque cuanto más lo observamos y más información inferimos, más se parece a una estrella joven formándose, pero, dado que su masa es extremadamente baja, la teoría que sabemos que funciona para explicar cómo se forman las estrellas, nos dice que no se ha podido formar como una estrella”, advierte.
Aunque el hallazgo deja planteadas más preguntas que respuestas, lo más sorprendente para los científicos es que su disco, entorno a algo similar al tamaño de Júpiter (pero 10 veces más masivo), tiene masa en polvo equivalente a media Tierra, condición que le permitiría formar lunas.
“De hecho, observaciones con ALMA están confirmando observacionalmente que los planetas se forman con polvo estelar del disco de una estrella, el que se va aglutinando formando un nuevo cuerpo, el cual va creciendo a tamaños mayores al polvo original del cual se formó este planeta aislado. Y de nuestras observaciones podemos inferir que, alrededor de OTS44 hay polvo más grande del que existe en las nubes donde se forman las estrellas. O sea, en este lugar (la vecindad de este planeta aislado), esta aglutinación se está dando; se están formando cosas”, sostiene.
Tras observar OTS44, el equipo de investigadores reafirma su convicción de que no hay una única manera para la formación de planetas. Una de las teorías que estaría refutando este hallazgo es que los planetas sólo se forman a partir del disco de una estrella. La astrónoma postula que cuando hay muchos objetos juntos, éstos comienzan a chocar entre sí y el más pequeño saldría disparado (como en un juego de pinball), pero a pesar de las interacciones dinámicas el cuerpo no perdería totalmente la materia que conforma su disco y es con ese material que se iniciaría el proceso de desarrollo evolutivo.
Por otro lado, la formación de pequeñas lunas que podrían orbitar OTS44 abre la posibilidad de la existencia de zonas de habitabilidad, sostuvo la astrónoma, lo que haría aún más interesante el objeto de estudio. “Otra variable a investigar es descubrir si hay agua en torno a este objeto y tratar de inferir a qué distancia este elemento se congela, porque nos daría mucha más información sobre la posible formación de pequeñas lunas y sus condiciones si existieran”, plantea.
El artículo “First Millimeter Detection of the Disk around a Young, Isolated, Planetary-mass Object” fue publicado el 18 de mayo de 2017 en The Astrophysical Journal Letters.
Posted: 24 May 2017 09:00 AM PDT
Ilustración artística de OGLE-2016-BLG-1195Lb, un planeta detectado por microlente. Crédito: NASA/JPL-Caltech.
Un equipo de científicos ha descubierto un nuevo planeta con la masa de la Tierra, orbitando su estrella a la misma distancia que nosotros del Sol. Sin embargo, es muy probable que el planeta sea demasiado frío para ser habitable para la vida como la conocemos, dado que su estrella es demasiado débil. El descubrimiento mejora la comprensión de los científicos de los tipos de sistemas planetarios que existen en el Universo.
“Este planeta ‘bola de hielo’ es el de masa más baja encontrado a través de micro-lente”, dijo Yossi Shvartzvald, un becario posdoctoral del Laboratorio de Propulsión a Chorro (JPL) de la NASA y autor principal de un nuevo estudio.
El micro-lente es una técnica que facilita el descubrimiento de objetos lejanos usando estrellas de fondo como linternas. Cuando una estrella cruza justo frente de una estrella brillante en el fondo, la gravedad de la que se encuentra en primer plano centra la luz de la más lejana, haciendo que se vea más brillante. Un planeta que orbite el objeto de fondo puede causar una intermitencia adicional del brillo de la estrella. En este caso, la intermitencia duró unas pocas horas. Con esta técnica se ha encontrado los exoplanetas más lejanos conocidos y permite detectar planetas de masa baja que están mucho más lejos de sus estrellas que la Tierra del Sol.
El planeta recientemente descubierto, llamado OGLE-2016-BLG-1195Lb, ayuda a los científicos en su búsqueda de descubrir la distribución de planetas en nuestra galaxia. Una pregunta abierta es si hay una diferencia en la frecuencia de planetas en el bulbo central de la Vía Láctea comparado con su disco, la región aplanada ue rodea el bulbo. OGLE-2016-BLG-1195Lb se encuentra en el disco, al igual que dos planetas detectados previamente a través de micro-lente por el Telescopio Espacial Spitzer de la NASA.
“Aunque solo tenemos un puñado de sistemas planetarios con distancias bien determinadas que están lejos de nuestro sistema solar, la falta de detecciones por parte de Spitzer en el bulbo sugiere que los planetas pueden ser menos comunes hacia el centro de nuestra galaxia que en el disco”, dijo Geoff Bryden, astrónomo de JPL y coautor del estudio.
Para el nuevo estudio, los investigadores fueron alertados del evento de microlente inicial por el sondeo OGLE (Optical Gravitational Lensing Experiment). Los autores del estudio usaron la red KMTNet (Korea Microlensing Telescope Network) y Spitzer para rastrear el evento desde tierra y el espacio.
Con KMTNet y Spitzer observando el evento, los científicos tuvieron dos puntos de vista desde donde estudiar los objetos involucrados, como si dos ojos separados por una gran distancia lo estuvieran viendo. Los datos obtenidos les permitieron detectar el planeta con KMTNet y calcular la masa de la estrella y el planeta con Spitzer.
Aunque OGLE-2016-BLG-1195Lb tiene casi la misma masa que la Tierra y se encuentra a la misma distancia de su estrella que nuestro planeta del Sol, la similitudes terminan allí.
OGLE-2016-BLG-1195Lb está a 13.000 años-luz de distancia y orbita una estrella muy pequeña ue podría ser una enana marrón, un objeto que no genera energía mediante fusión nuclear. Esta estrella en particular tiene solo un 7,8% de la masa del Sol, justo en el límite de ser o no una estrella. También podría ser una estrella enana ultra fría.
Debido a la distancia a la que OGLE-2016-BLG-1195Lb se encuentra de su estrella, sería un planeta extremadamente frío, incluso más que Plutón, por lo que cualquier superficie de agua estaría congelada.
El artículo “An Earth-mass Planet in a 1 au Orbit around an Ultracool Dwarf” fue publicado en la edición del 1 de mayo de 2017 de The Astrophysical Journal Letters.
Fuente: Jet Propulsion Laboratory


Posted: 19 May 2017 09:00 AM PDT

Las siluetas de los telescopios Hubble y Spitzer acompañan la ilustración artística del exoplaneta HAT-P-26b. Crédito: NASA/GSFC.
Hasta ahora se han descubierto miles de exoplanetas, pero poco se sabe sobre sus atmósferas, especialmente en el caso de los cuerpos celestes más pequeños que Júpiter. Sin embargo, la composición atmosférica puede aportar valiosas pistas sobre cómo se formaron estos lejanos planetas.
Ahora, utilizando cuatro observaciones recientes del telescopio espacial Hubble y dos anteriores del Spitzer, investigadores de la NASA y de la Universidad de Exeter (Reino Unido) publican datos de la atmósfera del exoplaneta HAT-P-26b, de un tamaño parecido a Neptuno, pero más cálido. Este mundo, situado a unos 437 años-luz, orbita alrededor de una estrella un poco más pequeña que el Sol.
Los resultados revelan que la atmósfera de este Neptuno cálido está constituida básicamente de nubes de hidrógeno y helio, con signos claros de presencia de agua. “El H2O es una de las moléculas más abundantes en el universo y pensamos que está bien mezclada en la atmósfera gaseosa de HAT-P-26b y otros exoplanetas gigantes como él”, explica a Sinc la autora principal del trabajo, Hannah R. Wakeford, del Centro de Vuelo Espacial Goddard de la NASA, en EE.UU.
“Pero lo que es importante de esta agua es que nos da claves sobre cómo se formó el planeta”, añade la investigadora, quien subraya que usando la firma de absorción de agua detectada en las atmósferas de estos mundos de masa similar a la de Neptuno se puede estimar la metalicidad de su atmósfera, que es su cantidad de elementos pesados ​​(más pesados que el hidrógeno y el helio).
En el caso de HAT-P-26b resulta que su metalicidad es más baja de lo esperado. En el Sistema Solar, la metalicidad de Júpiter es entre dos y cinco veces la del Sol, y la de Saturno unas diez veces más. Sin embargo, Urano y Neptuno contienen más elementos pesados, y presentan metalicidades que superan más de cien veces la de nuestra estrella.
“A partir de las mediciones de los planetas gigantes en nuestro sistema solar, observamos que los de menos masa tienen mayor metalicidad en su atmósfera; y otros ‘Neptunos’ descubiertos con agua en su atmósfera –como HAT-P-11b– encajan con esta tendencia; mundos con la masa de Neptuno y metalicidad muy alta”, apunta Wakeford.

Una rara metalicidad que ayuda a los modelos planetarios

Pero, sorprendentemente, la atmósfera de HAT-P-26b tiene una metalicidad más cercana a Júpiter, unas cuatro o cinco veces la del Sol. Según los autores, esto sugiere que se formó en una etapa más tardía –sin mucha contaminación posterior de material– o bien más cerca de su estrella, o posiblemente ambos factores a la vez, en comparación con la de nuestros gigantes gaseosos más pequeños (Urano y Neptuno).
Este descubrimiento ayudará a los científicos a comprender mejor cómo varía la composición atmosférica entre exoplanetas con diferentes tamaños, además de a delimitar posibilidades en los modelos de formación planetaria.
“Es la primera vez que vemos este tipo de diversidad en las atmósferas de estos exoplanetas”, dice Wakeford. “Es importante entender cómo se originaron otros sistemas planetarios para determinar cómo de probable es que se forme un sistema solar como el nuestro”, concluye.
El estudio “HAT-P-26b: A Neptune-mass exoplanet with a well-constrained heavy element abundance” fue publicado el 12 de mayo de 2017 por la revista Science.
Fuente: SINC


Posted: 26 May 2017 09:00 AM PDT

Imagen compuesta del sistema estelar Fomalhaut. La información tomada por ALMA se muestra en color naranjo. En azul se muestran las observaciones hechas por el telescopio Hubble. Crédito: ALMA (ESO/NAOJ/NRAO), M. MacGregor; NASA/ESA Hubble, P. Kalas; B. Saxton (NRAO/AUI/NSF).
Un equipo internacional de astrónomos usó el Atacama Large Millimeter/submillimeter Array (ALMA) para producir la primera imagen completa, en longitudes de onda milimétricas, del anillo de escombros que rodea la joven estrella Fomalhaut. Esta franja de escombros y gas extraordinariamente bien definida es probablemente el resultado de exo-cometas que chocaron unos con otros en los límites externos de un sistema planetario situado a 25 años-luz de la Tierra. Estas observaciones permitieron establecer analogías con los cometas de nuestro propio Sistema Solar.
Las imágenes de Fomalhaut obtenidas anteriormente con ALMA –en 2012, cuando el telescopio aún se encontraba en construcción– mostraban aproximadamente la mitad del disco de escombros. Si bien se había obtenido en un ensayo de la capacidad inicial de ALMA, esa imagen ya había proporcionado indicios muy interesantes sobre la naturaleza y el posible origen del disco.
Las nuevas observaciones de ALMA aportaron ahora una asombrosa vista de la brillante franja de escombros en su totalidad, y revelaron similitudes químicas entre su contenido helado y los cometas de nuestro Sistema Solar.
“ALMA nos proporcionó esta imagen extraordinariamente nítida de un disco de escombros totalmente formado”, celebra Meredith MacGregor, astrónoma del Centro Harvard-Smithsonian de Astrofísica, en Cambridge (Massachusetts, EE.UU.), y autora principal de uno de dos artículos donde se describen estas observaciones. “Por fin podemos ver la forma bien definida de este disco, que podría proporcionarnos bastante información sobre el sistema planetario donde se originó, y que es responsable por su apariencia tan característica”.
Fomalhaut es un sistema estelar relativamente cercano, y uno de unos 20 sistemas con planetas de los cuales se han obtenido imágenes directas. El sistema tiene aproximadamente 440 millones de años, o cerca de un décimo de la edad del Sistema Solar.
Tal como se aprecia en la nueva imagen de ALMA, a unos 20.000 millones de kilómetros de la estrella se formó una brillante franja de polvo helado de aproximadamente 2.000 millones de kilómetros de extensión.
Los discos de escombros alrededor de las estrellas jóvenes son un fenómeno común, correspondientes a períodos dinámicos y caóticos de la historia de los sistemas solares. Los astrónomos creen que se forman durante las colisiones de cometas y otros planetesimales en las partes externas de sistemas solares jóvenes. Los escombros remanentes absorben la luz de la estrella central y reemiten esa energía en forma de un tenue brillo en longitudes de onda milimétricas que pueden ser observadas con ALMA.
Con los nuevos datos recabados por ALMA y un detallado modelo informático, los investigadores pudieron calcular con precisión el emplazamiento, el ancho y las características geométricas del disco. Estos parámetros confirmaron que un anillo tan angosto probablemente sea el resultado de la influencia gravitacional de los planetas del sistema, explica MacGregor.
Las nuevas observaciones de ALMA también son las primeras en mostrar claramente un brillo apocéntrico, un fenómeno predicho en 2016 en un artículo firmado por Margaret Pan, investigadora del Instituto de Tecnología de Massachusetts, de Cambridge, quien también es coautora de los nuevos artículos de ALMA. Al igual que cualquier objeto con órbita alargada, el material polvoriento del disco de Fomalhaut se desplaza más lentamente cuando se encuentra más lejos de la estrella. A medida que disminuye su velocidad, el polvo se acumula y forma densas concentraciones en las partes más distantes del disco. Estas densas áreas son detectadas por ALMA como emisiones milimétricas más brillantes.


Imagen de ALMA del disco de escombros en el sistema Fomalhaut. El punto central es la emisión sin resolver de la estrella. Crédito: ALMA (ESO/NAOJ/NRAO); M. MacGregor.
Al usar los mismos datos de ALMA pero centrándose en claras señales milimétricas emitidas naturalmente por las moléculas del espacio, los investigadores también pudieron detectar grandes nubes de gas de monóxido de carbono precisamente en el mismo lugar que el disco de escombros.
“Estos datos nos permitieron determinar que la abundancia relativa de monóxido de carbono y de dióxido de carbono alrededor de Fomalhaut es más o menos la misma que la que se observa en los cometas de nuestro Sistema Solar”, explica Luca Matrà, investigador de la Universidad de Cambridge (Reino Unido) y autor principal del segundo artículo publicado por el equipo. “Esta similitud química permite establecer una analogía con las condiciones que propician la formación de cometas en las zonas externas de este sistema planetario y el nuestro”. Matrà y sus colegas creen que este gas es liberado durante constantes colisiones de cometas, o bien es el resultado de un único y gran impacto de super-cometas cientos de veces más masivos que el Hale-Bopp.
La presencia de este disco de escombros bien definido alrededor de Fomalhaut, sumada a su composición química particularmente familiar, podría ser un indicio de que este sistema está experimentando su propia versión del Último Bombardeo Intenso, un período ocurrido hace aproximadamente 4.000 millones de años, cuando la Tierra y otros planetas recibían frecuentes embestidas de asteroides y cometas que sobraron del proceso de formación del Sistema Solar.
“Hace veinte años, los mejores telescopios milimétricos produjeron los primeros mapas borrosos de los granos de polvo que orbitaban alrededor de Fomalhaut. Ahora, con ALMA funcionando a plena capacidad, se obtuvo una imagen del anillo entero”, comenta Paul Kalas, astrónomo de la Universidad de California (Berkeley) e investigador principal de una de estas observaciones. “Esperamos detectar un día los planetas que ejercen influencia sobre las órbitas de estos granos”.
Fuente: ALMA
Posted: 27 May 2017 10:00 AM PDT


Elementos del módulo Schiaparelli observados en noviembre de 2016 por la sonda MRO. Arriba se observa el sitio de impacto; abajo a la izuierda, el paracaídas y el escudo térmico posterior; abajo a la derecha el escudo frontal. Crédito: NASA/JPL-Caltech/Universidad de Arizona.
La investigación sobre las causas del aterrizaje forzoso del módulo Schiaparelli de ExoMars ha determinado que fue un conflicto en la información del ordenador a bordo lo que provocó que la secuencia de descenso acabara prematuramente.
El módulo demostrador de entrada, descenso y aterrizaje Schiaparelli se separó del orbitador TGO (Trace Gas Orbiter) el 16 de octubre de 2016, según lo planeado, iniciando un viaje de tres días hacia Marte.
El 19 de octubre, la mayor parte del descenso de seis minutos, se desarrolló según lo previsto: el módulo entró correctamente en la atmósfera, mientras el escudo térmico lo protegía en su veloz bajada. A su vez, los sensores de los escudos delantero y trasero recopilaban valiosos datos científicos y técnicos sobre la atmósfera y escudo térmico.
Al mismo tiempo que entraba en la órbita del Planeta Rojo, la telemetría de Schiaparelli se iba enviando al TGO, marcando un hito en la historia de la exploración marciana. Esta transmisión en tiempo real ha resultado fundamental para reconstruir la secuencia de acontecimientos.
Mientras el TGO grababa las transmisiones de Schiaparelli, el orbitador Mars Express de la ESA monitorizaba la señal portadora del módulo de aterrizaje, al tiempo que, desde India, lo hacía el Giant Metrewave Radio Telescope (GMRT).
En los días y semanas siguientes, la sonda Mars Reconnaissance Orbiter (MRO) de la NASA capturó una serie de imágenes que identificaban el módulo, el escudo frontal y el paracaídas todavía unido al escudo trasero, en una zona de Marte muy cercana al punto de aterrizaje previsto.
Las imágenes sugerían que estos elementos se habían separado del módulo según lo esperado, aunque era evidente que Schiaparelli había descendido a gran velocidad, debido a los residuos esparcidos por la zona del impacto.
Ahora acaba de concluir una investigación externa independiente, dirigida por el Inspector General de la ESA. En ella se identifican las circunstancias y las causas del aterrizaje forzoso, y se ofrecen recomendaciones generales para evitar este tipo de defectos y debilidades en el futuro.
Unos tres minutos tras la entrada en la atmósfera, el paracaídas se desplegó, pero el módulo experimentó unas velocidades de rotación inesperadamente altas. Esto causó una breve saturación –es decir, se superó el intervalo de medición esperado– en la Unidad de Medición de Inercia, que medía la velocidad de rotación del módulo.
Esta saturación provocó un grave error en el cálculo de orientación por parte del software del sistema de guiado, navegación y control. La combinación de este cálculo de orientación incorrecto con las posteriores mediciones del radar hizo que el ordenador estimara que el módulo se encontraba por debajo del nivel del suelo.
Esto desencadenó el despliegue prematuro del paracaídas y del escudo trasero, el encendido de los propulsores durante tan solo 3 segundos en lugar de 30, y la activación del sistema sobre el terreno, como si Schiaparelli ya hubiera aterrizado. El paquete científico de superficie envió un paquete de datos de mantenimiento antes de que se perdiera la señal.
En realidad, el módulo permaneció en caída libre desde una altitud de unos 3,7 km, lo que resulta en una velocidad de impacto de unos 540 km/h.
El informe de la Comisión de Investigación de Schiaparelli indica que el módulo estuvo a punto de aterrizar con éxito en el lugar previsto y que se logró una parte muy importante de los objetivos de demostración. Los resultados de vuelo revelaron la necesidad de actualizaciones de software y ayudarán a mejorar los modelos informáticos de comportamiento del paracaídas.


Ilustración artística del rover de ExoMars 2020, la plataforma de ciencia de superficie y el orbitador TGO. Imagen no está a escala. Crédito: ESA/ATG medialab.
“Todo lo que hemos aprendido nos servirá para seguir preparando la misión ExoMars 2020, que incluirá un robot explorador y una plataforma de superficie. Aterrizar en Marte es un todo un desafío, pero un desafío que debemos superar para poder cumplir nuestros objetivos finales”, indicó David Parker, director de Vuelos Tripulados y Exploración Robótica de la ESA.
“Resulta interesante pensar que, si no se hubiera producido la saturación y las fases finales hubieran concluido sin problemas, probablemente no habríamos identificado otros puntos débiles que también contribuyeron al incidente. Gracias a esta investigación hemos descubierto aspectos que requieren de atención particular y que beneficiarán a la misión de 2020”, señaló Jan Woerner, Director General de la ESA.
Tras el incidente, ExoMars 2020 se ha sometido a una importante revisión que ha permitido confirmar que está en el buen camino para cumplir la ventana de lanzamiento. Tras recibir completa información sobre el estado del proyecto, los Estados miembros de la ESA que forman parte de la Comisión del Programa de Vuelos Tripulados, Microgravedad y Exploración reafirmaron su compromiso con la misión, que incluye el primer robot explorador de Marte dedicado a perforar la superficie en búsqueda de pruebas de vida en el Planeta Rojo.
Entretanto, el TGO ha comenzado su fase de aerofrenado en los límites de la atmósfera, que durará un año y que finalizará cuando llegue a su órbita científica a principios de 2018. En las oportunidades de observación de noviembre y junio, el satélite ya ha demostrado que sus instrumentos científicos están listos para empezar a trabajar.
Además de su objetivo principal de analizar la atmósfera en busca de gases que podrían estar relacionados con actividad biológica o geológica, el orbitador también funcionará como repetidor para el robot explorador y la plataforma de superficie de la misión de 2020.

Se puede descargar una copia del informe aquí (en inglés).
Fuente: ESA
Publicar un comentario